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Abstract

Hippocampal subfield atrophy is a prime structural change in the brain, associated with cog-

nitive aging and neurodegenerative diseases such as Alzheimer’s disease. Recent develop-

ments in genome-wide association studies (GWAS) have identified genetic loci that

characterize the risk of hippocampal volume loss based on the processes of normal and

abnormal aging. Polygenic risk scores are the genetic proxies mimicking the genetic role of

the pre-existing vulnerabilities of the underlying mechanisms influencing these changes.

Discriminating the genetic predispositions of hippocampal subfield atrophy between cogni-

tive aging and neurodegenerative diseases will be helpful in understanding the disease etiol-

ogy. In this study, we evaluated the polygenic risk of Alzheimer’s disease (AD PGRS) for

hippocampal subfield atrophy in 1,086 individuals (319 cognitively normal (CN), 591 mild

cognitively impaired (MCI), and 176 Alzheimer’s disease dementia (ADD)). Our results

showed a stronger association of AD PGRS effect on the left hemisphere than on the right

hemisphere for all the hippocampal subfield volumes in a mixed clinical population (CN

+MCI+ADD). The subfields CA1, CA4, hippocampal tail, subiculum, presubiculum, molecu-

lar layer, GC-ML-DG, and HATA showed stronger AD PGRS associations with the MCI

+ADD group than with the CN group. The subfields CA3, parasubiculum, and fimbria

showed moderately higher AD PGRS associations with the MCI+ADD group than with the

CN group. Our findings suggest that the eight subfield regions, which were strongly associ-

ated with AD PGRS are likely involved in the early stage ADD and a specific focus on the left

hemisphere could enhance the early prediction of ADD.
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Introduction

Alzheimer’s disease dementia (ADD) is a debilitating neurodegenerative disease and the most

common form of dementia that currently affects millions around the world and its occurrence

is expected to triple by 2050 [1]. Early prognosis and diagnosis are crucial in optimal disease

management and intervention. Brain imaging and genetic data have played a vital role in

forming the diagnostic criteria. Brain imaging studies have shown the medial temporal lobe

regions to be highly vulnerable to aging and AD. Neuroimaging studies have well-established

the atrophy in medial temporal regions [2, 3], especially in the hippocampus associated with

aging [4] and AD [5, 6].

Hippocampal volume is among the widely-studied and well-established criteria for the

early diagnosis of AD [7]. The hippocampus can be divided into sub-regions with distinct

functional characterizations [8] and recent developments in neuroimaging techniques have

made it possible to obtain proxy subfield information to study the heterogeneous regions of

the hippocampus in greater detail [9]. Studies have been performed on these subfields to deter-

mine the earliest affected regions for AD, aging, and other neurological disorders. Previous

studies on AD have narrowed down the early atrophy initiation site around the CA1-subicu-

lum regions and expect the atrophy to be moving inward-out with the progression of the dis-

ease [10–12]. Moreover, some studies reported asymmetric hippocampal atrophy among AD

patients. Interestingly, some studies suggested AD patients are highly susceptible to substantial

level of asymmetric atrophy in hippocampal subfield volumes [13–16].

Hippocampal subfield volumes are shown to have a high heritability rate and thus can be

used as quantitative phenotypes in genetic association studies [17]. Heritability is a measure of

the degree of variation in a trait due to the genetic variations among the individuals in a popu-

lation. The understanding of the genetic influence on various underlying mechanisms specific

to neurological processes of different subfields will help in the prognosis and diagnosis.

Genome-wide association studies (GWASs) investigate the association of genetic variants

mainly of individual single-nucleotide polymorphisms (SNPs) on complex traits under study.

Numerous such genetic variants are said to have diverse and complex etiologies and synergistic

effects on many complex traits. Identification of each genetic variant is important to under-

stand the risk prediction, disease risk, and population differences of the gene toward a trait.

GWAS on AD cases and normal controls have identified many genetic variants associated

with diseases. For instance, genes like APOE, TREM2, CLU, CR1, and many others with func-

tional roles in pathways related to brain function, suggesting high-risk associations with AD

[18–20], have been reported using GWAS. Studies have shown high heritability of around 60–

80% associated with late-onset AD [21]. However, the individual effects of the reported genetic

risk loci are smaller in comparison to the combined polygenic effect. An individual SNP has a

modest effect and explains a small proportion of the risk. The synergetic effect of multiple risk

loci and each with their own minor risk leads to a higher AD incidence in most cases [22, 23].

The increasing use of GWAS and the subsequent need for analyzing the polygenic effects of

the SNPs have led to the wide use of approaches like polygenic risk score (PGRS) analysis

using different methods. The PGRS is a single value estimate based on the genetic architecture

of an individual expressing the genetic liability towards a trait or a disease of interest. PGRS is

the cumulative genetic risk of a phenotype of interest in an individual based on the genetic var-

iants in the genome.

However, the effect of the PGRS on the individual subfields of the hippocampus remains

unclear. In the present study, we, investigate the relationship between the hippocampal sub-

fields and the PGRS. We calculated and examined 1) the PGRS effect for individual hippocam-

pal subfields and their hemispheric lateralization or asymmetry in the total population
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independent of their clinical status, and 2) the differences in the PGRS effect for individual

groups classified based on their clinical status. We expect 1) strong AD PGRS associations of

CA1 and subiculum regions with the MCI and ADD groups and less strong associations with

the CN group, 2) weak AD PGRS association in the CA3, parasubiculum, and fimbria with the

MCI and ADD groups, and stronger associations with the CN group, being the farthest regions

from the AD-related atrophy initiation site, and 3) strong AD PGRS association with the left

hemisphere volumes and less strong associations with the right hemisphere volumes.

Methods

Study participants

Data used in the preparation of this article were obtained from the Alzheimer’s disease Neuro-

imaging Initiative (ADNI) database (http://adni.loni.usc.edu). The present study includes data

from 1086 participants; 319 cognitively normal control elderly, 591 participants with mild cog-

nitive impairments, and 176 patients diagnosed with ADD. The eligibility criteria for all the

ADNI subjects can be found at https://adni.loni.usc.edu/methods/documents/. ADNI used the

National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer’s Dis-

ease and Related Disorders Association (NINCDS-ADRDA) criteria for the clinical diagnosis

of probable AD. A summary of the participant’s demographic characteristics is shown in

Table 1.

MRI acquisition and data processing

Cross-sectional T1-weighted structural MRI scans with raw data acquisition matrix of

192 × 192 × 166, voxel size of 1.25 × 1.25 × 1.2 mm3, repetition time/echo time of 8020/50 ms,

0.4 × 0.4 × 2.0 mm3 resolution, minimum 24 slices, and acquisition time: 8.1 mins were used.

Further details on ADNI imaging protocols can be found at http://adni.loni.usc.edu/methods/

documents/mriprotocols/. The T1 images were processed using Freesurfer v6.0 (https://surfer.

nmr.mgh.harvard.edu/fswiki) software and extracted whole hippocampus volume and the

Table 1. Demographic characteristics of the study population.

CN MCI AD

Number of subjects (n) 319 591 176

Agea,b 75.21±5.27 73.43±7.43 75.40±7.76

Male (%)c 47.33 39.08 44.31

Level of education (years)a,d 16.34±2.67 15.91±2.85 15.00±3.04

MMSEa,e 29.08±1.12 27.64±1.77 23.32±2.04

Values are expressed as mean ± standard deviation (SD).

CN, cognitive normal; MCI, mild cognitively impaired; AD, Alzheimer’s disease dementia; MMSE, Mini-Mental

State Examination.
aThe P-values were calculated using the general linear model; Bonferroni post hoc test was also performed when F-

test was significant.
bMain interaction among groups: F2, 1080 = 11.51, p = 1.10E-5. (Age). Post hoc: CN versus MCI, 4.10E-5; MCI versus

AD, 5.96E-3; CN versus AD, 1.00.
cThe P-value were calculated using the χ2 test: χ2 = 6.10, p = 0.04. (Gender)
dMain interaction among groups: F2, 1080 = 14.30, p = 7.35E-7. Post hoc: CN versus MCI, 5.15E-3; MCI versus AD,

4.05E-3; CN versus AD, 4.11E-7. (Education)
eMain interaction among groups: F2, 1080 = 680.56, p = 6.39E-192. Post hoc: CN versus MCI, 1.86E-33; MCI versus

AD, 7.01E-142; CN versus AD, 1.11E-189. (MMSE)

https://doi.org/10.1371/journal.pone.0270795.t001

PLOS ONE Polygenic score for Alzheimer’s disease identifies differential atrophy in hippocampal subfield volumes

PLOS ONE | https://doi.org/10.1371/journal.pone.0270795 July 13, 2022 3 / 14

http://adni.loni.usc.edu/
https://adni.loni.usc.edu/methods/documents/
http://adni.loni.usc.edu/methods/documents/mriprotocols/
http://adni.loni.usc.edu/methods/documents/mriprotocols/
https://surfer.nmr.mgh.harvard.edu/fswiki
https://surfer.nmr.mgh.harvard.edu/fswiki
https://doi.org/10.1371/journal.pone.0270795.t001
https://doi.org/10.1371/journal.pone.0270795


hippocampal subfield volumes. Detailed documentation of the procedures can be found else-

where [24–26]. We used an updated automated technique for the reliable segmentation of the

hippocampal subfields using ultra-high-resolution T1 MRI data recently incorporated into the

Freesurfer software suite [9]. The hippocampus was segmented into the whole hippocampus,

hippocampal-amygdala-transition-area (HATA), hippocampal tail (tail), subiculum (SUB),

presubiculum (PSUB), parasubiculum (ParaSUB), cornu ammonis 1(CA1), cornu ammonis 3

(CA3), cornu ammonis 4 (CA4), fimbria, granule cells in the molecular layer of the dentate

gyrus (GC-ML-DG), molecular layer HP (ML), and hippocampal fissure (fissure) as shown in

Fig 1. For statistical analysis, we used intracranial volumes (ICV) as covariates. Since we had

access to the ICV values for all the study subjects from our previous study [27], we used ICV

values estimated from FreeSurfer v5.30 (https://surfer.nmr.mgh.harvard.edu/fswiki) to reduce

computational time. We note that the two versions of the software package show only very lit-

tle differences between the ICV values estimated [28]. Since there was no substantial changes

in the hippocampal subfield segmentation tool used in the FreeSurfer version 7.1 compared to

version 6.0 [29], we used FreeSurfer v6.0 for estimating hippocampal subfield volumes. In

addition, the amygdala segmentation was highly focused in the FreeSufer v7.1 [30] and this

suggests that using FreeSurfer v7.1 makes no difference to the values estimated from the hip-

pocampal subfield segmentation algorithm implemented in the FreeSurfer v6.0 [29].

SNP genotype data

SNP genotype data from ADNI-1, ADNI-GO, and ADNI-2 cohorts were downloaded from

the ADNI LONI database (http://adni.loni.usc.edu/). Genotype data from the whole genome

sequencing (WGS) project genotyped with Illumina Omni 2.5M Chip (Illumina, Inc, San

Diego, CA, USA), ADNI-1 project genotyped using Illumina HumanOmniExpress Bead Chip

(Illumina, Inc, San Diego, CA, USA) and ADNI-GO/2 project genotyped with Illumina

Fig 1. Hippocampal subfields as segmented using the Freesurfer. A) A transverse section of hippocampus displaying the different regions of the

hippocampus, B) An illustration of the heterogenous hippocampus segmented into 12 subfields using an automated segmentation technique used in

this study based on an atlas developed using Bayesian inference algorithm. CA—cornu ammonis, GCMLDG—granule cell layer of the dentate gyrus,

HATA—hippocampus-amygdala-transition area.

https://doi.org/10.1371/journal.pone.0270795.g001
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Human610-Quad Bead Chip (Illumina, Inc, San Diego, CA, USA) were considered in this

study. Subjects from ADNI-3 were not included as the data for ADNI-3 was recently added.

The quality control was performed separately for these genotype datasets. Individuals with call

rate<95%, gender inconsistencies, heterozygosity rate (± 3 SD from the mean) were excluded.

SNPs with call rate<95%, minor allele frequency (MAF) <1%, Hardy-Weinberg equilibrium

(HWE) test P-value <10−6 were excluded. After quality control, imputation was performed for

all datasets with a pre-phased reference panel using the European Ancestry population imple-

mented in the Haplotype Reference Consortium (HRC) panel version 1.1. After imputation,

low-quality SNPs with info score <0.5 and MAF <0.01 were excluded.

For the analysis, subjects who underwent MRI scanning and DNA genotyped were

included. 727 non-Hispanic white subjects primarily enrolled in the ADNI whole-genome

sequencing (WGS) project, 355 subjects that were not enrolled in the ADNI WGS project, but

enrolled in the ADNI-1 project were included. Additionally, 4 subjects that were not present

in both WGS and ADNI-1 projects but enrolled in the ADNI-GO/2 project were included. All

the genotype datasets were merged for the analysis, which finally comprised 1,086 subjects and

7,485,124 SNPs.

Statistical analysis

All statistical analyses for the demographic variables were performed using IBM SPSS Statistics

(Version 26.0. Armonk, NY: IBM Corp.). All analyses entailed two-tailed significance testing

and controlled for the covariates age, sex, years of education, and estimated total intracranial

volume. One-way analysis of variance and Bonferroni post hoc correction for multiple com-

parisons was used for continuous demographic variables, and chi-squared tests were per-

formed for categorical demographic variables. We considered P-values <0.05 as significant.

Linear regression on 12 hippocampal subfield volumes and whole hippocampus volume

involving 7,485,124 SNPs were performed using PLINK [31] software. Principal components

(PCs) accounting for the population substructure were calculated with the Smartpca program

using EIGENSOFT [32]. Tracy-Widom statistics were used to identify the significantly associated

PCs with both 12 hippocampal volumes and whole hippocampus volume. Linear regression was

performed with age, sex, field strength, intracranial volume, education, and 3 PCs as covariates.

Estimation of Polygenic Risk Scores (PGRS)

PGRSs for 12 hippocampal subfield volumes and whole hippocampus volume were estimated

using the profile option in the PLINK software. Summary statistics data downloaded from the

International Genomics of Alzheimer’s Project (IGAP) consortium (https://www.niagads.org/)

study conducted by Lambert et al., [33] were included as training data. The IGAP study com-

prises 37,154 control subjects and 17,008 AD cases. The data were linkage disequilibrium (LD)

clumped with clump function (—clump) available in PLINK software by excluding SNPs located

within 500 kilobases and having r2 > 0.25 with a significantly-associated SNP. The analysis was

performed by iterating over a range of P-values (GWAS significance level or polygenic threshold

P< 5 × 10−8, P< 1 × 10−7, P< 1 × 10−6, P< 1 × 10−5, P< 1 × 10−4, P< 1 × 10−3, P< 0.01,

P< 0.05, P< 0.1, P< 0.1, P< 0.3, P< 0.5) to determine the best-fit P-value threshold.

Results

Demographics

A total of 1086 participants—319 cognitively normal, 591 participants with mild cognitively

impaired, and 176 patients diagnosed with ADD—were analyzed. Age (F2, 1080 = 11.51,
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p = 1.10E-5), gender (χ2 test: χ2 = 6.10, p = 0.04), level of education (F2, 1080 = 14.30, p = 7.35E-
7), and MMSE (F2, 1080 = 680.56, p = 6.39E-192) were all significantly different between the

diagnostic groups (Table 1).

AD PGRS effect on bilateral hippocampal subfields

In this analysis, the mixed clinical status population (CN+MCI+ADD) was included to evalu-

ate the hemispherical differences. AD polygenic association analysis was performed on the left

and right hemispheres of the 12 hippocampal subfields and the whole hippocampus to test for

hemispherical differences. The results showed a strong AD PGRS effect on the left hemisphere

of the 12 subfields and the whole hippocampus than the right hemisphere of 12 subfields and

the whole hippocampus (S1 Table and Fig 2).

AD PGRS effect on hippocampal subfields of clinically diagnosed group

The AD PGRS effect was evaluated in the clinically diagnosed groups stratified as CN, MCI,

and MCI+ADD). Due to a small number of ADD subjects (n = 176), we combined MCI and

Fig 2. Hippocampal subfields exhibit asymmetric hemispherical effects for AD PGRS. AD polygenic analysis on hippocampal subfields showed

asymmetric hemispherical differences. Best fit AD polygenic risk score correlation P-values were shown for each hippocampal subfield. The x-axis

shows hippocampal subfields and the y-axis shows–log10 P-values from the best-fit AD polygenic risk score correlations. The red-colored bar plot

indicates the left hemisphere and the blue color indicates the right hemisphere.

https://doi.org/10.1371/journal.pone.0270795.g002
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ADD (MCI+ADD) subjects to evaluate the AD polygenic effect among the ADD group. The

analyses were performed on the left and right hemispheres of the hippocampal subfields and

the whole hippocampus. All the 12 hippocampal subfields showed a stronger AD PGRS effect

on the left hemisphere than the right hemisphere in CN, MCI, and MCI+ADD groups (S2

Table and Fig 3). Likewise, the whole hippocampus exhibited stronger AD PGRS effect on the

left hemisphere (PT<0.01, r2 = 0.04, P = 1.93×10−10) than on the right hemisphere

(PT<5×10−8, r2 = 0.03, P = 5.54×10−8) in all groups. We hypothesized that the MCI+ADD

group can demonstrate the AD PGRS effect much better than CN and MCI groups, so we

focused more on evaluating the MCI+ADD group and compared it with the CN group.

In the left hemisphere of MCI+ADD group, subfields like CA1 (PT<0.01, r2 = 0.03,

P = 3.51×10−8), CA4 (PT<0.01, r2 = 0.03, P = 4.23×10−9), hippocampal-tail (PT<1×10−4, r2 =

0.04, P = 5.89×10−10), subiculum (PT<0.01, r2 = 0.04, P = 5.77×10−10), presubiculum

(PT<0.01, r2 = 0.04, P = 3.84×10−10), molecular layer (PT<0.01, r2 = 0.04, P = 3.91×10−10),

GC-ML-DG (PT<0.01, r2 = 0.03, P = 2.79×10−9) and HATA (PT<0.01, r2 = 0.03,

P = 2.91×10−8) showed strong association for AD polygenic risk related atrophy than CN

group. While, CA3 (PT<0.01, r2 = 0.02, P = 1.20×10−5), parasubiculum (PT<0.01, r2 = 0.02,

P = 1.95×10−5), fimbria (PT<0.01, r2 = 0.02, P = 3.56×10−6) showed moderate association for

AD polygenic-risk-related atrophy. Hippocampal fissure (PT<0.001, r2 = 0.003, P = 0.15)

showed no association (P<0.05) for the AD polygenic-risk-related atrophy.

In the right hemisphere of MCI+ADD group, parasubiculum (PT<1×10−7, r2 = 0.006,

P = 0.02) showed a weaker association for the AD polygenic risk effect than the left hemi-

sphere. Moreover, parasubiculum in the right hemisphere showed minor difference in the

strength of their association for AD polygenic effect among CN (PT<0.01, r2 = 0.01, P = 0.05),

MCI (PT<0.01, r2 = 0.008, P = 0.03) and MCI+ADD (PT<1×10−7, r2 = 0.006, P = 0.02) groups.

Likewise, fimbria showed little differences in the strength of their association for AD polygenic

effect among CN (PT<0.01, r2 = 0.03, P = 3.0×10−4), MCI (PT<0.01, r2 = 0.01, P = 9.8×10−4)

and MCI+ADD (PT<0.01, r2 = 0.02, P = 1.56×10−5). Similar to the left hemisphere, hippocam-

pal fissure (PT<5×10−8, r2 = 0.001, P = 0.44) in the right hemisphere of MCI+ADD group

showed no association (P<0.05) for the AD polygenic risk related atrophy.

A Bonferroni-adjusted significance threshold of p = 0.05/25 structures/3 groups = 6.67E-4
was used.

Discussion

In the present study, we aimed to understand the associations among polygenic risk for Alzhei-

mer’s disease, volumes of individual hippocampal subfield, hemispheric asymmetry or laterali-

zation, and diagnostic group variations among cognitive normal, mild cognitively impaired,

and Alzheimer’s disease dementia individuals. To the best of our knowledge, the current study

is the first to investigate the hemispherical asymmetry or lateralization and the differences in

the association of AD PGRS on hippocampal subfield volumes along the AD spectrum. Multi-

ple comparison issues were corrected using the stringent post hoc Bonferroni correction.

Our results showed differences in the strength of AD PGRS association on left and right

hippocampal volumes of the individual clinical diagnostic groups (CN, MCI and ADD) and

the mixed clinical status population (CN+MCI+ADD). The left hemisphere showed a greater

inclination to neurodegeneration than the right, predominantly. The subfields CA1, CA4, hip-

pocampal tail, subiculum, presubiculum, molecular layer, GC-ML-DG, and HATA showed

stronger PGRS associations in the MCI+ADD than in the CN. In contrast, the subfields CA3,

parasubiculum, and fimbria showed moderate AD PGRS associations in the MCI+ADD than

CN. There was no AD PGRS association for the hippocampal fissure between the groups.
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Fig 3. Hippocampal subfields in MCI and AD subjects show differential AD PGRS effects. MCI and AD subjects exhibit differential AD

polygenic effects for the hippocampal subfields. Best-fit AD polygenic risk score correlation P-values were shown for each hippocampal

subfield stratified by cognitively normal (CN), mild cognitively impaired (MCI), and Alzheimer’s disease (AD) groups. Due to the low sample

size for the AD group, MCI subjects were combined with AD subjects. The x-axis shows hippocampal subfields stratified for CN, MCI, and

MCI+AD. The y-axis shows–log10 P-values from the best-fit AD polygenic risk score correlations. The orange-colored bar plot indicates CN,

purple color indicates MCI, and red color indicates MCI+AD. A) The top bar plot represents the left hemisphere and the plot B) below

represents the right hemisphere.

https://doi.org/10.1371/journal.pone.0270795.g003
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Earlier studies on the association between AD PGRS and hippocampal volumes report a

clear genetic influence on total hippocampal volume [34], and a high AD PGRS effect on the

total left hippocampal volume [35]. In line with the previous study, our findings showed a

strong association for the AD PGRS effect on the left hippocampal subfield volumes. A previous

study involving young participants reported an association of AD PGRS with CA1 and fissure

regions [36]. Although previous studies primarily focused on investigating the association of

AD PGRS on hippocampal volume or subfield volumes only among the young population, our

study evaluated the AD PGRS effect on the hippocampal subfields along the AD continuum.

Aging, neurodegenerative and certain neuropsychiatric conditions generally display hemi-

spherical asymmetry in their atrophy patterns. Structural brain changes are observed across

the lifespan of adults [37] including the later stages of aging [38]. Previous studies showed

asymmetric hippocampal atrophy between CN, MCI, and ADD [39, 40]; specifically, the left

hemisphere is much more vulnerable to degeneration than the right hemisphere [41, 42]. Gen-

erally, the left hemisphere is engulfed much faster than the right during the AD-mediated

degeneration. However, the right hemisphere follows the similar degeneration with a time lag.

This leads due to the asymmetrical brain atrophy among AD patients [42]. The significant

atrophy in the left hemisphere is may be due to increased β-amyloid deposition in the left

hemisphere of AD patients [43], specifically, increased β-amyloid deposition in the left precu-

neus/cuneus and medial-temporal (fusiform, parahippocampal and entorhinal), an adjacent

region to the hippocampus causes increased atrophy in these regions [44]. It should be noted

that the atrophy starts in the entorhinal cortex and then spreads to the hippocampus [45]. The

occurrence of this pathomechanism suggests that the increased beta-amyloid deposition prob-

ably leads to the increased atrophy in the left hippocampal subfield volumes. In line with the

previous studies, our study involving a group with mixed clinical status has demonstrated

greater atrophy due to AD PGRS effect in the left hemisphere of all subfield regions than the

right hemisphere (except for subfields; hippocampal fissure, and parasubiculum, bilaterally)

and this strong AD PGRS effect on the left hemisphere was also observed in the whole hippo-

campus volume. Thus, considering the subregions in the two hemispheres as individual enti-

ties would be appropriate to explain the hemispheric functional lateralization.

Hippocampal atrophy is among the strongest predictors of AD progression, as the volumet-

ric measure and the atrophy rates are shown to be efficient in the classification of CN, MCI,

and ADD [6]. Hippocampal subfield regions reported having high heritability among healthy

young, adult, and elderly groups [46]. Moreover, understanding the association of AD PGRS

with hippocampal subfields will help in focusing on specific subfield regions in the early pre-

diction and preventive interventions.

Like the mixed clinical population, the left hemisphere showed a stronger association for

AD PGRS related atrophy than the right hemisphere among CN, MCI, and MCI+ADD

groups, respectively. In the CN group, other than fimbria, the rest of the regions did not show

any significant AD PGRS association with hippocampal subfield volumes, bilaterally. We

found a stronger association of AD PGRS with CA1, CA4, hippocampus-tail, subiculum, pre-

subiculum, molecular layer, GC-ML-DG, and HATA regions among the MCI group, which is

considered as an intermediate stage for ADD [47]. Moreover, this association was much stron-

ger in the left hemisphere. Further, our results suggest that atrophy in the CA1, CA4, hippo-

campus-tail, subiculum, presubiculum, molecular layer, GC-ML-DG, and HATA regions

could initiate in the early stages of ADD, specifically in the left hemisphere.

AD PGRS models are seen to have high predictive accuracy in classifying MCI converters

into late-onset AD [48]. Since the number of subjects in the AD group was inadequate to cap-

ture the AD PGRS effect, we combined the MCI and ADD groups into the (MCI+ADD)

group to be able to evaluate the AD PGRS effect in ADD subjects. However, like the results in
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the MCI group, CA1, CA4, hippocampus-tail, subiculum, presubiculum, molecular layer,

GC-ML-DG, and HATA regions showed a stronger association with AD PGRS in the

MCI+ADD group than in the CN group. This suggests that these eight subfield regions are

strongly associated with AD-mediated atrophy in the early and late stages of the disease. As

anticipated, the strength of association in these eight subfield regions among MCI+ADD was

greater than in the MCI group and this is due to the presence of ADD subjects in the group.

So, further tests of an AD PGRS effect in the subfield regions among the ADD group require

additional, larger sample sizes.

Age-related volumetric atrophy was absent in fimbria, CA1, subiculum, presubiculum, hip-

pocampal tail, molecular layer, and HATA, but was seen in CA2/3, CA4, and dentate gyrus

[49]. However, AD-related atrophy was found in CA1, CA2/3, CA4, subiculum, parasubicu-

lum, presubiculum, and dentate gyrus [10, 12, 50–53].

Based on the AD PGRS risk, the trajectory of influence is early and high on the left hemi-

sphere [54]. Carlesimo et al. suggested the subfield volume change initiates around the subicu-

lum and presubiculum [12]. Subsequently, the change might travel toward the outward

regions and might finally reach the CA3, fimbria, and parasubiculum, the farthest regions

from the initiation site [11]. In line with a previous study, our results showed a strong AD

PGRS effect in subiculum and presubiculum along with CA1, CA4, hippocampal tail, molecu-

lar layer, GC-ML-DG, and HATA. This suggests that these eight subfield regions are likely

associated with early-stage AD-related atrophy. The moderate association with AD PGRS

observed in CA3, parasubiculum, and fimbria suggests that these regions are likely involved in

the later stages of AD-related atrophy.

The present study has various salient features. First, we used a very large training dataset

from the IGAP consortium for a robust and precise AD PGRS modeling. Second, we evaluated

the AD PGRS effect using 1,086 subjects, which included subjects along the AD continuum

aged between 55 and 90, unlike previous studies that predominantly focused on young adults

aged less than 55. However, the number of subjects in the AD group was inadequate to capture

the AD PGRS effect, so we combined MCI and ADD (MCI+ADD) group to substantially eval-

uate the AD PGRS effect among ADD subjects, which is a clear limitation of this study.

Though, recent studies on the hippocampal subfield volumes used high resolution

T2-weighted images [55, 56], we selected T1-weighted images for two main reasons. First, sev-

eral previous studies conducted their hippocampal subfield automated segmentation using

T1-weighted images, which may be helpful for us to validate our findings with previous studies

due to commonality in the type of neuroimaging. Second, we want to use the most commonly

available T1-weighted images so that our study results may be incorporated into a future meta-

analysis on the subfield volumes. Our results must be interpreted cautiously as our study did

not use T2-weighted high resolution images and this adds to the limitation of our study.

In sum, the current study suggests that there is a stronger AD PGRS association with the

left hemisphere than with the right hemisphere. We also found differential AD PGRS associa-

tions for certain hippocampal subfields. Most importantly, the eight subfield regions with

strong AD PGRS association highlighted in the ADD group are likely associated with early

stages of ADD. Taken together, our study suggests that focusing on eight subfield regions spe-

cifically on the left hemisphere could help predict ADD at its early stages.

Supporting information

S1 Table. Polygenic risk scores of the hippocampal subfields for the left hemisphere and

the right hemisphere in the mixed clinical status population.

(XLSX)

PLOS ONE Polygenic score for Alzheimer’s disease identifies differential atrophy in hippocampal subfield volumes

PLOS ONE | https://doi.org/10.1371/journal.pone.0270795 July 13, 2022 10 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270795.s001
https://doi.org/10.1371/journal.pone.0270795


S2 Table. Polygenic risk scores of the hippocampal subfields for the left hemisphere and

the right hemisphere in the cognitively normal, mild cognitively impaired, Alzheimer’s

disease dementia, and the mild cognitively impaired + Alzheimer’s disease dementia

groups.

(XLSX)

Acknowledgments

We are thankful to Ezhil Barani G, Department of Interactive Entertainment, Bharathiar Uni-

versity, Coimbatore, India, for his support in preparing the scientific figures in this

manuscript.

The ADNI data collection and sharing profited from the extensive help of various groups.

For the full list of authors and supporting agencies, please see adni.loni.usc.edu/wp-content/

uploads/how_to_apply/ADNI_DSP_Policy.pdf.

Data used in the preparation of this article were obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators

within the ADNI contributed to the design and implementation of ADNI and/or provided

data but did not participate in the analysis or writing of this report. A complete listing of

ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_

apply/ADNI_Acknowledgement_List.pdf

Author Contributions

Conceptualization: Balaji Kannappan, Tamil Iniyan Gunasekaran.

Data curation: Balaji Kannappan, Tamil Iniyan Gunasekaran.

Formal analysis: Balaji Kannappan, Tamil Iniyan Gunasekaran.

Funding acquisition: Kun Ho Lee.

Investigation: Balaji Kannappan, Tamil Iniyan Gunasekaran.

Methodology: Balaji Kannappan, Tamil Iniyan Gunasekaran.

Project administration: Jan te Nijenhuis, Kun Ho Lee.

Resources: Muthu Gopal, Deepika Velusami, Gugan Kothandan, Kun Ho Lee.

Supervision: Jan te Nijenhuis, Kun Ho Lee.

Validation: Balaji Kannappan, Tamil Iniyan Gunasekaran.

Visualization: Balaji Kannappan, Tamil Iniyan Gunasekaran.

Writing – original draft: Balaji Kannappan, Tamil Iniyan Gunasekaran.

Writing – review & editing: Jan te Nijenhuis, Muthu Gopal, Deepika Velusami, Gugan

Kothandan, Kun Ho Lee.

References
1. Prince MJ. World Alzheimer Report 2015: the global impact of dementia: an analysis of prevalence, inci-

dence, cost and trends: Alzheimer’s Disease International; 2015.

2. Jack CR, Petersen RC, Xu Y, O’Brien PC, Smith GE, Ivnik RJ, et al. Rate of medial temporal lobe atro-

phy in typical aging and Alzheimer’s disease. Neurology. 1998; 51(4):993–9. Epub 1998/10/22. https://

doi.org/10.1212/wnl.51.4.993 PMID: 9781519.

PLOS ONE Polygenic score for Alzheimer’s disease identifies differential atrophy in hippocampal subfield volumes

PLOS ONE | https://doi.org/10.1371/journal.pone.0270795 July 13, 2022 11 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270795.s002
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1212/wnl.51.4.993
https://doi.org/10.1212/wnl.51.4.993
http://www.ncbi.nlm.nih.gov/pubmed/9781519
https://doi.org/10.1371/journal.pone.0270795


3. Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, et al. One-Year Brain

Atrophy Evident in Healthy Aging. The Journal of Neuroscience. 2009; 29(48):15223–31. https://doi.

org/10.1523/JNEUROSCI.3252-09.2009 PMID: 19955375

4. Daugherty AM, Bender AR, Raz N, Ofen N. Age differences in hippocampal subfield volumes from

childhood to late adulthood. Hippocampus. 2016; 26(2):220–8. Epub 09/04. https://doi.org/10.1002/

hipo.22517 PMID: 26286891.

5. Barnes J, Bartlett JW, van de Pol LA, Loy CT, Scahill RI, Frost C, et al. A meta-analysis of hippocampal

atrophy rates in Alzheimer’s disease. Neurobiol Aging. 2009; 30(11):1711–23. Epub 03/17. https://doi.

org/10.1016/j.neurobiolaging.2008.01.010 PMID: 18346820.

6. Henneman WJ, Sluimer JD, Barnes J, van der Flier WM, Sluimer IC, Fox NC, et al. Hippocampal atro-

phy rates in Alzheimer disease: Added value over whole brain volume measures. Neurology. 2009; 72

(11):999–1007. https://doi.org/10.1212/01.wnl.0000344568.09360.31 PMID: 19289740.

7. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of

dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzhei-

mer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & demen-

tia: the journal of the Alzheimer’s Association. 2011; 7(3):263–9. Epub 2011/04/26. https://doi.org/10.

1016/j.jalz.2011.03.005 PMID: 21514250.

8. Duvernoy HM. The human hippocampus: functional anatomy, vascularization, and serial sections with

MRI. Berlin; New York: Springer; 2005.

9. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, et al. A computational atlas of

the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmenta-

tion of in vivo MRI. NeuroImage. 2015; 115:117–37. https://doi.org/10.1016/j.neuroimage.2015.04.042

PMID: 25936807

10. Devanand DP, Bansal R, Liu J, Hao X, Pradhaban G, Peterson BS. MRI hippocampal and entorhinal

cortex mapping in predicting conversion to Alzheimer’s disease. NeuroImage. 2012; 60(3):1622–9.

https://doi.org/10.1016/j.neuroimage.2012.01.075 PMID: 22289801

11. Wang L, Khan A, Csernansky JG, Fischl B, Miller MI, Morris JC, et al. Fully-automated, multi-stage hip-

pocampus mapping in very mild Alzheimer disease. Hippocampus. 2009; 19(6):541–8. https://doi.org/

10.1002/hipo.20616 PMID: 19405129

12. Carlesimo GA, Piras F, Orfei MD, Iorio M, Caltagirone C, Spalletta G. Atrophy of presubiculum and sub-

iculum is the earliest hippocampal anatomical marker of Alzheimer’s disease. Alzheimer’s & Dementia:

Diagnosis, Assessment & Disease Monitoring. 2015; 1(1):24–32. https://doi.org/10.1016/j.dadm.2014.

12.001 PMID: 27239489.

13. Ardekani BA, Hadid SA, Blessing E, Bachman AH. Sexual Dimorphism and Hemispheric Asymmetry of

Hippocampal Volumetric Integrity in Normal Aging and Alzheimer Disease. AJNR Am J Neuroradiol.

2019; 40(2):276–82. Epub 2019/01/17. https://doi.org/10.3174/ajnr.A5943 PMID: 30655257.

14. Barnes J, Scahill RI, Schott JM, Frost C, Rossor MN, Fox NC. Does Alzheimer’s disease affect hippo-

campal asymmetry? Evidence from a cross-sectional and longitudinal volumetric MRI study. Dement

Geriatr Cogn Disord. 2005; 19(5–6):338–44. Epub 2005/03/24. https://doi.org/10.1159/000084560

PMID: 15785035.

15. Shi F, Liu B, Zhou Y, Yu C, Jiang T. Hippocampal volume and asymmetry in mild cognitive impairment

and Alzheimer’s disease: Meta-analyses of MRI studies. Hippocampus. 2009; 19(11):1055–64. Epub

2009/03/25. https://doi.org/10.1002/hipo.20573 PMID: 19309039.

16. Sarica A, Vasta R, Novellino F, Vaccaro MG, Cerasa A, Quattrone A, et al. MRI Asymmetry Index of

Hippocampal Subfields Increases Through the Continuum From the Mild Cognitive Impairment to the

Alzheimer’s Disease. Frontiers in Neuroscience. 2018; 12. https://doi.org/10.3389/fnins.2018.00576

PMID: 30186103

17. Patel S, Park MTM, Devenyi GA, Patel R, Masellis M, Knight J, et al. Heritability of hippocampal subfield

volumes using a twin and non-twin siblings design. Human Brain Mapping. 2017; 38(9):4337–52.

https://doi.org/10.1002/hbm.23654 PMID: 28561418

18. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of

apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science (New

York, NY). 1993; 261(5123):921–3. Epub 1993/08/13. https://doi.org/10.1126/science.8346443 PMID:

8346443. PMID: 8346443

19. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, et al. Variant of TREM2

Associated with the Risk of Alzheimer’s Disease. New England Journal of Medicine. 2012; 368(2):107–

16. https://doi.org/10.1056/NEJMoa1211103 PMID: 23150908.

20. Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association

study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nature genetics. 2009;

41(10):1094–9. Epub 2009/09/08. https://doi.org/10.1038/ng.439 PMID: 19734903.

PLOS ONE Polygenic score for Alzheimer’s disease identifies differential atrophy in hippocampal subfield volumes

PLOS ONE | https://doi.org/10.1371/journal.pone.0270795 July 13, 2022 12 / 14

https://doi.org/10.1523/JNEUROSCI.3252-09.2009
https://doi.org/10.1523/JNEUROSCI.3252-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19955375
https://doi.org/10.1002/hipo.22517
https://doi.org/10.1002/hipo.22517
http://www.ncbi.nlm.nih.gov/pubmed/26286891
https://doi.org/10.1016/j.neurobiolaging.2008.01.010
https://doi.org/10.1016/j.neurobiolaging.2008.01.010
http://www.ncbi.nlm.nih.gov/pubmed/18346820
https://doi.org/10.1212/01.wnl.0000344568.09360.31
http://www.ncbi.nlm.nih.gov/pubmed/19289740
https://doi.org/10.1016/j.jalz.2011.03.005
https://doi.org/10.1016/j.jalz.2011.03.005
http://www.ncbi.nlm.nih.gov/pubmed/21514250
https://doi.org/10.1016/j.neuroimage.2015.04.042
http://www.ncbi.nlm.nih.gov/pubmed/25936807
https://doi.org/10.1016/j.neuroimage.2012.01.075
http://www.ncbi.nlm.nih.gov/pubmed/22289801
https://doi.org/10.1002/hipo.20616
https://doi.org/10.1002/hipo.20616
http://www.ncbi.nlm.nih.gov/pubmed/19405129
https://doi.org/10.1016/j.dadm.2014.12.001
https://doi.org/10.1016/j.dadm.2014.12.001
http://www.ncbi.nlm.nih.gov/pubmed/27239489
https://doi.org/10.3174/ajnr.A5943
http://www.ncbi.nlm.nih.gov/pubmed/30655257
https://doi.org/10.1159/000084560
http://www.ncbi.nlm.nih.gov/pubmed/15785035
https://doi.org/10.1002/hipo.20573
http://www.ncbi.nlm.nih.gov/pubmed/19309039
https://doi.org/10.3389/fnins.2018.00576
http://www.ncbi.nlm.nih.gov/pubmed/30186103
https://doi.org/10.1002/hbm.23654
http://www.ncbi.nlm.nih.gov/pubmed/28561418
https://doi.org/10.1126/science.8346443
http://www.ncbi.nlm.nih.gov/pubmed/8346443
http://www.ncbi.nlm.nih.gov/pubmed/8346443
https://doi.org/10.1056/NEJMoa1211103
http://www.ncbi.nlm.nih.gov/pubmed/23150908
https://doi.org/10.1038/ng.439
http://www.ncbi.nlm.nih.gov/pubmed/19734903
https://doi.org/10.1371/journal.pone.0270795


21. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of Genes and Envi-

ronments for Explaining Alzheimer Disease. Archives of General Psychiatry. 2006; 63(2):168–74.

https://doi.org/10.1001/archpsyc.63.2.168 PMID: 16461860

22. Lee SH, Harold D, Nyholt DR, Goddard ME, Zondervan KT, Williams J, et al. Estimation and partitioning

of polygenic variation captured by common SNPs for Alzheimer’s disease, multiple sclerosis and endo-

metriosis. Human molecular genetics. 2013; 22(4):832–41. Epub 2012/11/30. https://doi.org/10.1093/

hmg/dds491 PMID: 23193196.

23. Ridge PG, Mukherjee S, Crane PK, Kauwe JSK, Alzheimer’s Disease Genetics C. Alzheimer’s Disease:

Analyzing the Missing Heritability. PLOS ONE. 2013; 8(11):e79771. https://doi.org/10.1371/journal.

pone.0079771 PMID: 24244562

24. Dale AM, Fischl B, Sereno MI. Cortical Surface-Based Analysis: I. Segmentation and Surface Recon-

struction. NeuroImage. 1999; 9(2):179–94. https://doi.org/10.1006/nimg.1998.0395 PMID: 9931268

25. Fischl B, Sereno MI, Dale AM. Cortical Surface-Based Analysis: II: Inflation, Flattening, and a Surface-

Based Coordinate System. NeuroImage. 1999; 9(2):195–207. https://doi.org/10.1006/nimg.1998.0396

PMID: 9931269

26. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: auto-

mated labeling of neuroanatomical structures in the human brain. Neuron. 2002; 33(3):341–55. Epub

2002/02/08. https://doi.org/10.1016/s0896-6273(02)00569-x PMID: 11832223.

27. Choi KY, Lee JJ, Gunasekaran TI, Kang S, Lee W, Jeong J, et al. APOE Promoter Polymorphism-

219T/G is an Effect Modifier of the Influence of APOE ε4 on Alzheimer’s Disease Risk in a Multiracial

Sample. J Clin Med. 2019; 8(8). Epub 2019/08/21. https://doi.org/10.3390/jcm8081236 PMID:

31426376.

28. Bigler ED, Skiles M, Wade BSC, Abildskov TJ, Tustison NJ, Scheibel RS, et al. FreeSurfer 5.3 versus

6.0: are volumes comparable? A Chronic Effects of Neurotrauma Consortium study. Brain Imaging

Behav. 2020; 14(5):1318–27. https://doi.org/10.1007/s11682-018-9994-x PMID: 30511116.

29. Sämann PG, Iglesias JE, Gutman B, Grotegerd D, Leenings R, Flint C, et al. FreeSurfer-based seg-

mentation of hippocampal subfields: A review of methods and applications, with a novel quality control

procedure for ENIGMA studies and other collaborative efforts. Hum Brain Mapp. 2022; 43(1):207–33.

Epub 2020/12/29. https://doi.org/10.1002/hbm.25326 PMID: 33368865.

30. Saygin ZM, Kliemann D, Iglesias JE, van der Kouwe AJW, Boyd E, Reuter M, et al. High-resolution

magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic

atlas. Neuroimage. 2017; 155:370–82. Epub 2017/05/10. https://doi.org/10.1016/j.neuroimage.2017.

04.046 PMID: 28479476.

31. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for

whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81

(3):559–75. Epub 2007/07/25. https://doi.org/10.1086/519795 PMID: 17701901.

32. Patterson N, Price AL, Reich D. Population Structure and Eigenanalysis. PLOS Genetics. 2006; 2(12):

e190. https://doi.org/10.1371/journal.pgen.0020190 PMID: 17194218

33. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of

74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nature genetics. 2013;

45(12):1452–8. Epub 10/27. https://doi.org/10.1038/ng.2802 PMID: 24162737.

34. Lupton MK, Strike L, Hansell NK, Wen W, Mather KA, Armstrong NJ, et al. The effect of increased

genetic risk for Alzheimer’s disease on hippocampal and amygdala volume. Neurobiol Aging. 2016;

40:68–77. https://doi.org/10.1016/j.neurobiolaging.2015.12.023 PMID: 26973105

35. Foley SF, Tansey KE, Caseras X, Lancaster T, Bracht T, Parker G, et al. Multimodal Brain Imaging

Reveals Structural Differences in Alzheimer’s Disease Polygenic Risk Carriers: A Study in Healthy

Young Adults. Biological Psychiatry. 2017; 81(2):154–61. https://doi.org/10.1016/j.biopsych.2016.02.

033 PMID: 27157680

36. Murray AN, Chandler HL, Lancaster TM. Multimodal hippocampal and amygdala subfield volumetry in

polygenic risk for Alzheimer’s disease. Neurobiol Aging. 2021; 98:33–41. https://doi.org/10.1016/j.

neurobiolaging.2020.08.022 PMID: 33227567

37. Zhou D, Lebel C, Evans A, Beaulieu C. Cortical thickness asymmetry from childhood to older adulthood.

Neuroimage. 2013; 83:66–74. Epub 2013/07/06. https://doi.org/10.1016/j.neuroimage.2013.06.073

PMID: 23827331.

38. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA. A pathophysiological framework of hippo-

campal dysfunction in ageing and disease. Nature reviews Neuroscience. 2011; 12(10):585–601. Epub

2011/09/08. https://doi.org/10.1038/nrn3085 PMID: 21897434.

39. Wachinger C, Salat DH, Weiner M, Reuter M, Initiative ftAsDN. Whole-brain analysis reveals increased

neuroanatomical asymmetries in dementia for hippocampus and amygdala. Brain. 2016; 139

(12):3253–66. https://doi.org/10.1093/brain/aww243 PMID: 27913407

PLOS ONE Polygenic score for Alzheimer’s disease identifies differential atrophy in hippocampal subfield volumes

PLOS ONE | https://doi.org/10.1371/journal.pone.0270795 July 13, 2022 13 / 14

https://doi.org/10.1001/archpsyc.63.2.168
http://www.ncbi.nlm.nih.gov/pubmed/16461860
https://doi.org/10.1093/hmg/dds491
https://doi.org/10.1093/hmg/dds491
http://www.ncbi.nlm.nih.gov/pubmed/23193196
https://doi.org/10.1371/journal.pone.0079771
https://doi.org/10.1371/journal.pone.0079771
http://www.ncbi.nlm.nih.gov/pubmed/24244562
https://doi.org/10.1006/nimg.1998.0395
http://www.ncbi.nlm.nih.gov/pubmed/9931268
https://doi.org/10.1006/nimg.1998.0396
http://www.ncbi.nlm.nih.gov/pubmed/9931269
https://doi.org/10.1016/s0896-6273%2802%2900569-x
http://www.ncbi.nlm.nih.gov/pubmed/11832223
https://doi.org/10.3390/jcm8081236
http://www.ncbi.nlm.nih.gov/pubmed/31426376
https://doi.org/10.1007/s11682-018-9994-x
http://www.ncbi.nlm.nih.gov/pubmed/30511116
https://doi.org/10.1002/hbm.25326
http://www.ncbi.nlm.nih.gov/pubmed/33368865
https://doi.org/10.1016/j.neuroimage.2017.04.046
https://doi.org/10.1016/j.neuroimage.2017.04.046
http://www.ncbi.nlm.nih.gov/pubmed/28479476
https://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.1371/journal.pgen.0020190
http://www.ncbi.nlm.nih.gov/pubmed/17194218
https://doi.org/10.1038/ng.2802
http://www.ncbi.nlm.nih.gov/pubmed/24162737
https://doi.org/10.1016/j.neurobiolaging.2015.12.023
http://www.ncbi.nlm.nih.gov/pubmed/26973105
https://doi.org/10.1016/j.biopsych.2016.02.033
https://doi.org/10.1016/j.biopsych.2016.02.033
http://www.ncbi.nlm.nih.gov/pubmed/27157680
https://doi.org/10.1016/j.neurobiolaging.2020.08.022
https://doi.org/10.1016/j.neurobiolaging.2020.08.022
http://www.ncbi.nlm.nih.gov/pubmed/33227567
https://doi.org/10.1016/j.neuroimage.2013.06.073
http://www.ncbi.nlm.nih.gov/pubmed/23827331
https://doi.org/10.1038/nrn3085
http://www.ncbi.nlm.nih.gov/pubmed/21897434
https://doi.org/10.1093/brain/aww243
http://www.ncbi.nlm.nih.gov/pubmed/27913407
https://doi.org/10.1371/journal.pone.0270795


40. Minkova L, Habich A, Peter J, Kaller CP, Eickhoff SB, Klöppel S. Gray matter asymmetries in aging and
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